If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+2t=47
We move all terms to the left:
t^2+2t-(47)=0
a = 1; b = 2; c = -47;
Δ = b2-4ac
Δ = 22-4·1·(-47)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{3}}{2*1}=\frac{-2-8\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{3}}{2*1}=\frac{-2+8\sqrt{3}}{2} $
| -22v=220 | | 584=r-243 | | k/5+58=68 | | 46=18+18+c | | -6(m-90)=-6 | | 8+4x=3(x−1)+12 | | 2x+6(3+7)=50 | | 8d=88d= | | -3x-25=35+2x | | -2(3b-6)+8=9b-5b | | 2x-3+3x=10+2x+5 | | 3x12=2x-2 | | 8m+5=3-7m | | 6=w/19 | | 5x+5-3(x+1)=9x+5 | | -3(b+50)=42 | | 4y-4^3=12 | | 10+x=6× | | 3.5(x+1)=3x | | 7x+13=5(x-2) | | 2x+x+10=-7+x+10 | | -6r=-252 | | -24s=120 | | g=27+5/16 | | 18x(2+6)=20(3x+1) | | 4f=-68 | | 66=2(11.75)+2w | | r+21=96 | | 2(1+4)+2(a-6)=5a-7 | | b-18=12 | | 72=z+77 | | p+-75=-88 |